- Overview
- Alternatives
- Pros & Cons
Recent years have seen the application of single cell omics to the study of cancer, including single-cell genomes, epigenomes, transcriptomes, proteomes, and multi-omics. In the study of cancer evolution, fascinating findings have been made on treatment resistance and the mysteries of the tumor microenvironment.
Single-cell genome sequencing has recently been discovered to be extremely useful for the detection of somatic mutations, particularly during the evolution of tumors. DNA copy number abnormalities (CNAS) or an abnormally high number of chromosomes are common in cancer genomes. A discontinuous model of copy number evolution may also be important in other solid tumors, according to preliminary evidence from researchers utilizing single-cell gene sequencing in diseases such prostate, colon, liver, and lung cancer. The clinical diagnosis and management of cancer patients, as well as how evolutionarily we interpret the dynamics of tumor growth, are all significantly affected by this approach.
For more: single cell Omics for CNAS
Single Cell Omics for CNAS Information
Single Cell Omics for CNAS Pricing
8888